INDIAN MARITIME UNIVERSITY

(A Central University, Government of India) End Semester Examinations- June-July 2019

Semester – I

B.Tech (Marine Engineering)

Basic Electrical and Electronics Engineering (UG11T3104)

Date: 16-07-2019	Maximum Marks: 100
Time: 3 Hrs	Pass Marks: 50

Part-A

(All questions are compulsory) (10 X 3 = 30 Marks)

- 1. (a) Differentiate between permanent magnet and electromagnet ?
 - (b) What is semiconductor and why doping is important for semiconductor?
 - (c) What is damping torque in measuring instruments?
 - (d) What is form factor and what its value for sinusoidal AC voltage or current?
 - (e) Define α and β of a transistor?
 - (f) Define linear and nonlinear resistors?
 - (g) What are the condition for a 3 phase balanced circuit?
 - (h) Find the balance condition of the bridge.

- (i) Define resonance? How many types of resonance is there?
- (j) What is shunt regulator? Draw the circuit diagram of a shunt regulator.

<u>Part B</u>

(Answer any five of the following) (5 X 14 = 70 Marks)

2. (a) Find the values of different voltages that can be obtained from a 12-V battery with the help of voltage divider circuit of Fig.

(7)

(b) Find the value of R_{L} for the given network below that the power is maximum? And also find the Max Power through load-resistance R_{L} by using maximum power transfer theorem? (7)

- 3. (a) Find out the energy stored in a inductor and a capacitor? (7)
 - (b) Write down the details construction of lead acid battery? (7)
- 4. (a) For a star connection derive the expression of i) phase voltage and line voltage ii) phase current and line current. (7)
 - (b) A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance, C. The current drawn is 2 A, and the power loss in the resistance is 100 W. Calculate the R and C and draw the phasor diagram
 (7)

- 5. (a) Discuss with neat sketch, the working of a Dynamometer type of a wattmeter.(7)
 - (b) A moving-coil instrument has a resistance of 10 Ω and gives full-scale deflection when carrying a current of 50 mA. Show how it can be adopted to measure voltage up to 750 V and currents up to 1000 A.

(7)

- 6. (a) Draw hysteresis loop and explain briefly the various part on it. (7)
 - (b) A flux of 40 miliweber links with 600 turn coil when a current of 5 ampere is passing through the coil. Calculate
 - (i) The inductance of the coil.
 - (ii) The energy stored in the magnetic field.
 - (iii) The average emf induced if the current is reduced to zero in 0.20 seconds. (2+2+3)
- 7. (a) A 5.0V stabilised power supply is required to be produced from a 12V DC power supply input source. The maximum power rating P_Z of the zener diode is 2W. Using the zener regulator circuit above calculate:

The maximum current flowing through the zener diode.

The minimum value of the series resistor, Rs

The load current I_{L} if a load resistor of $1k\Omega$ is connected across the zener diode

(2+2+3)

(b) What is a PN junction diode? How depletion region formed in a diode?

(7)

- 8. (a) write down the working principle of a transistor . (7)
 - (b) For the BJT circuit shown below, find i_c , i_B , i_E , and v_{CE} .

In the circuit, $V_{CC} = 17 \text{ V}$, $V_{BB} = 1.5 \text{ V}$, $R_C = 2 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, and $\beta_F = 50$.

(7)
